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Abstract. Double extortion ransomware attacks are a form of cyber
attack where the victims files are both encrypted and exfiltrated for
extortion purposes. There is empirical evidence that double extortion
leads to an increased willingness to pay a ransom, and higher ransoms,
compared to encryption-only attacks. In this paper we model two im-
portant sources of assymetric information between victim and attacker:
(a) Victims are typically uncertain whether data is exfiltrated, due to for
example misconfigured monitoring systems. (b) It is hard for attackers
to estimate the value of compromised files. We use game theory to anal-
yse the payoff consequences of such private information. Specifically, we
analyse a signaling game with double-sided information asymmetry: (1)
attackers know whether data is exfiltrated and victims do not, and (2)
victims know the value of data if it is exfiltrated, but the attackers do
not. Our analysis indicates that private information substantially low-
ers the payoff of attackers. In interpretation, this suggests that private
information is valuable to victims and a means to reduce incentives for
criminals to pursue ransomware.

Keywords: Ransomware · Data exfiltration · Information asymmetry ·
Signalling game

1 Introduction

The last decade has seen a rapid rise in crypto-ransomware attacks (7; 8; 25; 11;
26; 30). Crypto-ransomware, or ransomware for short, is broadly defined as the
use of crypto-techniques to encrypt the files of a victim, after which the attackers
ask for a ransom to decrypt the files (37; 22). Ransomware has proved highly
profitable for criminal gangs, primarily because many victims pay the ransom
in order to receive the decryption keys (28). Since roughly 2019, ransomware
groups have been experimenting with double extortion (14; 6). In this case the
attackers not only encrypt files, but also exfiltrate data with the purpose to sell
or publish the data if the victim does not pay (18; 19; 26; 22).
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Double extortion increases the ransom requested and ransom amount paid
(23; 25). (25) analysed 353 ransomware attacks reported to the Dutch Police and
found a significant positive effect of data exfiltration on ransom requested. In a
follow-up study, (24) analysed 429 ransomware attacks reported to the Dutch
Police and an Incident Response company. They applied a two-step statistical
procedure to measure how data exfiltration influences both the frequency of
ransom payments and the ransom amount paid. No significant effect of data
exfiltration on frequency of ransom paid was identified. However, the ransom
amount paid was 5,5 larger with data exfiltration than without data exfiltration.
This trend aligns with the observations of (22), who reported that cyber security
experts consider double extortion tactics to become a standard modus operandi
among ransomware criminals.

One important issue for victims of a ransomware attack is determining whether
data was exfiltrated (23). Due to the deletion of log files by attackers, or mis-
configured monitoring systems, victims often do not know whether data was
exfiltrated (32; 33). This means that an attacker who has not exfiltrated data
can still threaten the publication of data, to get a larger ransom paid. On the
flip side, the claims of an attacker that has exfiltrated data may be viewed as
less-credible, empty threats, by the victim. Attackers are, thus, increasingly try-
ing to send credible signals that data was exfiltrated. For instance, to back up
their claim, some attackers send evidence of exfiltration by means of a file tree
of the exfiltrated data or a couple of files. Such signals could, however, still be
sent, even if at a higher cost, by attackers who have not exfiltrated data.

(23) explored this one-sided information asymmetry with a game theoretic
signaling game. In the signaling game, the attacker learns whether data is exfil-
trated or not and then decides whether to send a signal to the victim, or not.
The analysis resulted in five distinct equilibrium scenarios, each defined by the
attackers’ varied signaling tactics. Calibrating their results with empirical data,
the authors concluded that a pooling scenario to be most likely in real-life, where
attackers send a signal of data exfiltration, regardless of actual data exfiltration.
The authors concluded that victims should be careful with attackers claiming
that data is exfiltrated.

One limitation of (23) is that the study did not consider an important dis-
advantage of sending ’evidence’ or signal to the victim if data is exfiltrated: it
might give the victim the opportunity to determine the value of the exfiltrated
data. In practice, it is hard for attackers to determine the value of the files to the
victim. The filenames and files which contain text are often in a foreign language,
and the sensitivity of data is difficult to judge without insider understanding.
Furthermore, it takes effort to estimate the importance of, potentially, millions
of files. Attackers are, therefore, likely to be imperfectly informed of the value of
files, even if data is exfiltrated. Combined, therefore, we have two information
asymmetries in double extortion ransomware attacks. First, the victim does not
know whether data was exfiltrated or not, but the attacker does. Second, the
victim can assess whether potentially exfiltrated data is valuable or not, but
the attacker cannot. Here, we define valuable data for the victim, as data with
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large reputation costs if it gets accessible for the general public, competitors or
similar.

To our knowledge, no previous studies have modelled this two-sided infor-
mation asymmetry of data exfiltration, and analysed how it effects the prof-
itability of attacks. Most empirical (25) and game-theoretical modeling (18; 19)
of double extortion ransomware has focused on the extra profits for attackers
by conducting data exfiltration and encryption, compared to only data encryp-
tion. We address the relationship between the uncertainty of data exfiltration
and profitability by analysing a signaling game. Signaling games provide a way
to model a strategic game with incomplete information and sequential choice
(12; 15; 1; 21; 29). The basic premise is that a player holding extra information
could try to influence the other players by sending a credible signal of their in-
formation. Signalling games provide a natural framework with which to explore
double extortion and the payoff consequences of asymmetric information. For a
more detailed explanation of signaling games we refer to (29).

Our work provides the following key contributions: First, we provide a game-
theoretical framework to analyse the double-sided information asymmetry in
double extortion ransomware attacks. The framework consists of a signaling
game, wherein the attacker can send a costly signal of data exfiltration that can
inform the victim’s beliefs and payment decision. Second, we identify four sepa-
rating and four pooling equilibria of the game and their underlying conditions.
The type of equilibria that exists in the game will depend on the parameters of
the game, particularly the cost of signaling data exfiltration, the cost to recover
files without decryption, the reputation loss from data leakage, and the probabil-
ity the victim’s files contain valuable data. We identify the factors determining
how much surplus the attacker can extract from the victim. Third, we analyse
the impact that private information of the victim has on the profitability of the
attacked. Through examples, we show that the payoff loss to the criminal from
now knowing the value of files can range from zero to over 20%. Private informa-
tion can, therefore, potentially disrupt the business model of ransomware games
by reducing the profits they can make.

We remark that our paper adds to a growing literature using game theory
to analyse the ransomware decision process (5; 13; 4; 9). Prior game-theoretical
studies have focused on the interaction of ransomware and victim’s decision
to invest in security measures like backups or insurance (37; 2; 31; 35). For
instance, Laszka, Farhang and Grossklags (16) focused on modeling the ran-
somware ecosystem as a whole and how backup decisions affect the ransomware
ecosystem. Vakilinia et al. (34) take a different approach in exploring how a
double sided auction can facilitate the negotiation between attacker and victim
to achieve a ‘fair’ ransom. Galinkin (13) analyses measures that an attacker can
disrupt the business model of the attackers by lowering the profitability of ran-
somware attacks. The main intervention suggested is that of back-ups. We note,
however, that in a setting with double extortion, back-ups are not enough to
combat the ransomware threat. We must also consider the reputational costs
from the publication of exfiltrated data.
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We proceed as follows. In Section 2 we introduce the signalling game. In
Section 3 we provide our main results. In Section 4 we conclude.

2 Signaling Game

We consider a two-player game between a criminal, henceforth called the at-
tacker, and a victim. In application we will focus on the victim being an organ-
isation but our analysis does not preclude the victim being an individual. We
take as given that the victim has been subject to a ransomware attack and their
data has been encrypted. The attacker is demanding a ransom for the decryption
key.

If the victim does not pay the ransom then it will cost VP to recover nor-
mal operations. The size of VP will depend on a range of factors such as the
availability of (functional) back-ups, the victim’s reliance on the encrypted files
for day-to-day operations, and the speed with which the organisation can return
to normal operations. If the victim does pay the ransom then we assume the
attackers will provide the decryption key and it will cost VNP for the victim
to restore normal operations. The size of VNP may include factors such as the
cost of decrypting files and the speed with which they can be decrypted. From a
game theoretic point of view, the predictions of our model depend solely on the
difference in recovery cost from paying versus not paying VP − VNP . Thus, to
simplify the model, and without loss of generality, we set VNP = 0 and VP = V .
We make the very mild assumption that V ≥ 0 and so access to the decryption
key cannot increase recovery costs. We will comment below on the case V = 0
where the decryption key is essentially ‘worthless’.

We take it as given that, as well as encrypting files, the attacker attempted
to exfiltrate data of the victim. We model two forms of asymmetric information
or, equivalently, incomplete information between the victim and attacker:

● The attempt to exfiltrate data may or may not have been ‘successful’. Let α
denote the prior probability that data was exfiltrated. Crucially, we assume
that the attacker knows if data is exfiltrated but the victim does not know.
The incomplete information of the victim means the criminal can threaten
to publish data even if no data was exfiltrated. In modelling games of incom-
plete information it is standard to distinguish (Harsanyi) types of a player
(10; 12). In this case the attacker can be of type ‘data was successfully ex-
filtrated’ or type ‘data was not exfiltrated’. We use the terms DE and NDE,
respectively, to distinguish the type of attacker.

● Exfiltration of data will cause reputational damage to the victim. Crucially,
we assume that the victim knows the size of this damage but the criminal
does not. For instance, the victim knows whether the data includes sensitive
information about customers, employees etc. We assume that there are two
types of victim: those with sensitive data, called high type, and those with-
out, called low type. If exfiltrated data were to be leaked then the victim
would incur reputation costs T1 or T0 < T1 depending on whether they are
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high or low type, respectively. If the data is not leaked then we assume there
is no reputation cost. The prior probability the victim is high type is β.

The game has three stages.

1. Following the approach of Harnsanyi (10), Nature determines the type of the
victim (high or low type) and the type of the criminal (data exfiltrated or no
data exfiltrated) in Stage 1 of the game. The victim learns their type (with
probability β they are high type), and the attacker learns whether data was
exfiltrated (with probability α it is exfiltrated).

2. In stage 2 the attacker chooses (a) whether or not to send a signal that data
has been exfiltrated, and (b) the size of ransom demand. The signal can,
for instance, consist of a picture of the file tree of the exfiltrated data, or a
sample of exfiltrated data. The cost to the attacker of sending a signal when
data is exfiltrated is kD and the cost when data is not exfiltrated is kN .
We assume that it is more costly to send a signal if no data is exfiltrated,
hence, kD < kN . The attacker can choose any ransom demand. To simplify
notation we denote by RS the ransom demand of the attacker if they send
a signal and RNS the demand if no signal is sent.4

3. In stage 3 the victim observes whether or not a signal was sent, and learns
the ransom demand. The victim then chooses whether to pay the ransom or
not. To simplify the analysis we assume an ultimatum bargaining game in
which there is no opportunity for negotiation. Thus, the victim is given a
take-it-or-leave it offer and the choice to pay or not ends the game.

The prior probability of data exfiltration α is assumed to be common knowl-
edge to attacker and victim. This means that in stage 3 of the game the victim
can form a belief on the probability that data was exfiltrated. This belief will be
based on prior belief α together with the observed action of the criminal in stage
2 to signal or not (along with the ransom demand). Let µ denote the updated
belief of the victim. The value of µ will be determined. The prior probability the
victim is high type β is also assumed to be common knowledge to attacker and
victim.

The variables of the game are summarized in Table 1. One additional vari-
able we introduce is L ≥ 0 which captures the legal fees and costs (including
psychological and moral) of paying a ransom. We also introduce variable ϵ to
represent the smallest unit of currency. This will allow us to characterise the
optimal ransom in a more succinct way. We exclude from the analysis any fixed
costs incurred by the attacker and victim that are not dependent on the strategic

4 The attacker could choose any ransom above 0 for any combination of both own type
and signal. So, suppose, more generally, we denote by RS

DE , R
S
NDE , R

NS
DE and RNS

NDE

the ransom of a type DE or NDE if they signal or do not signal. There cannot be
an equilibrium in which an attacker of type DE and NDE signal and RS

NDE ̸= RS
DE ;

this would reveal the attacker if type NDE and, thus, make their signal ineffective.
Similarly, there cannot be an equilibrium in which an attacker of type DE and NDE
would not signal and RNS

NDE ̸= RNS
DE ; this would again reveal the attacker if type

NDE and lower the ransom the victim would rationally pay.
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Table 1: Variables used in the data exfiltration signaling game
Variable Description

Attacker RS Ransom when signaling
RNS Ransom when not signaling
kD Cost of signal with data exfiltration
kN Cost of signal without data exfiltration
β Probability of data being valuable

Victim T1 Reputation cost for valuable data
T0 Reputation cost for non-valuable data
V Recovery cost without decryption key
L Legal fees of paying ransom
α Probability of data exfiltration
µ Belief on probability of data exfiltration
ϵ The smallest unit of currency

elements of the game. For instance we do not include the cost to the attacker of
implementing the attack. We can exclude such costs, without loss of generality,
because they will not influence the equilibrium outcomes of the game. We depict
the game in Figure 1.

3 Results

In the following we solve for Bayesian equilibria of the game (12). Informally, a
Bayesian equilibrium has the property that both attacker and victim: (1) max-
imise their expected payoffs given their beliefs and the strategy of the other, (2)
update their beliefs using Bayes rule. Thus, in equilibrium, players appropriately
interpret information, and have no incentive to change their actions given their
beliefs and the actions of the other player. It is standard to consider Bayesian
equilibria as a benchmark solution concept in signalling games to capture and
analyse the incentives of players (15).

We focus on Bayesian equilibria that satisfy the, so called, D1 Criterion (12).
To briefly explain the motivation for this refinement, we remark that if players
act consistent with a Bayesian equilibrium then there may be nodes with zero
probability of being reached. A Bayesian equilibrium does not tie down beliefs at
such nodes because Bayes rule is indeterminate. The D1 Criterion is used to place
‘common sense’ restrictions on beliefs. Specifically, The D1 Criterion imposes
extra conditions on beliefs by saying that any deviation from the equilibrium
path is assumed to be done by the type with the most incentive to deviate (3).

The D1 Criterion is useful to rule out equilibria sustained by ‘non-intuitive
beliefs’ (15). For instance, consider a candidate equilibria in which the attacker
chooses to not signal if they are type DE or NDE. On the equilibrium path the
attacker should not signal. Thus, Bayes rule does not impose any restrictions
on beliefs if the attacker does signal. Yet, informally, as we shall below, a type
DE has the most incentive to deviate and signal. The D1 Criterion would, thus,
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Nature

α

1-α

DE

RS , Signal

NDE

RS , Signal

RS − kD,−RS − L
Pa

y

−kD,−T1 − V
No Pay

RS − kN ,−RS − L
Pa

y

−kN ,−V
No Pay

Victim

RNS , No Signal

RNS , No Signal

RNS ,−RNS − L Pay

0,−T1 − V No
Pa

y

RNS ,−RNS − L Pay

0,−V No
Pa

y

Victim

Case T1 (Prob. β): Important files exfiltrated.

Nature

α

1-α

DE

RS , Signal

NDE

RS , Signal

RS − kD,−RS − L
Pa

y

−kD,−T0 − V
No Pay

RS − kN ,−RS − L
Pa

y

−kN ,−V
No Pay

Victim

RNS , No Signal

RNS , No Signal

RNS ,−RNS − L Pay

0,−T0 − V No
Pa

y

RNS ,−RNS − L Pay

0,−V No
Pa

y

Victim

Case T0 (Prob. 1-β): No important files exfiltrated.

Fig. 1: Description of the game.
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require the victim to believe the deviation was by a type DE. This rules out
‘non-intuitive’ equilibria that are only sustained by the victim believing a signal
of data exfiltration must indicate that data was not exfiltrated.

To focus the analysis on what we believe are the most realistic cases, we
distinguish and characterize three broad types of equilibrium: (a) separating
equilibria in which the type DE signals data is exfiltrated and the type NDE
does not, (b) a pooling equilibria in which both the type DE and NDE signal
that data is exfiltrated, and (c) a pooling equilibria in which both the type DE
and NDE do not signal that data is exfiltrated. We exclude from analysis hybrid
equilibria in which the attacker randomises their actions. In the following we
discuss separating and pooling equilibria in turn before analysing the impact
of private information. Throughout, we assume that if the victim is indifferent
between paying and not paying then they will not pay.

3.1 Separating Equilibrium

A separating equilibrium has the basic characteristic that the attacker signals
data exfiltration if they are of type DE (i.e. data was exfiltrated) and does not
signal if they are of type NDE (i.e. data was not exfiltrated). The existence of a
separating equilibrium and the exact form of any equilibrium will depend on the
parameters of the game. In total, we identified four types of separating equilibria
that can exist, which we will label A1-A4. These are summarised in Table 2. As
you can see the equilibria differ by whether or not the victim pays the ransom.
In equilibrium A1 the victim pays irrespective of their type and whether the
attacker signals. In equilibrium A2 the victim pays unless they are the low type
and the attacker signals. In equilibrium A3 the victim pays the ransom if the
attacker signals but does not pay the ransom if the attacker does not signal. In
equilibrium A4 the victim only pays if they are a high type and the attacker
signals.

In all four equilibria A1-A4 the high type victim pays if they receive a signal
of data exfiltration. The equilibria differ in whether a low type victim pays if
they receive a signal of data exfiltration and/or whether the victim (high or
low type) pays if they receive no signal. To provide some intuition for the four
equilibria we identify three ransom demands that prove particularly relevant:

R∗
S0 = T0 + V − L− ϵ;

R∗
S1 = T1 + V − L− ϵ;

R∗
NS = max{V − L− ϵ, 0}.

(1)

Informally, see the proof of Theorem 1 for the full details, R∗
S0 and R∗

S1 are the
maximum ransom the low type and high type, respectively, are willing to pay if
they believe data has been exfiltrated. While, R∗

NS is the maximum ransom the
victim is willing to pay if they believe data has not been exfiltrated. We readily
see that if V ≤ L the victim would not pay any positive ransom demand if they
know data has not been exfiltrated.
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If data exfiltration is believed to have taken place then the high type is
willing to pay a larger ransom than the low type, R∗

S1 > R∗
S0. This provides a

strategic trade-off for the attacker: (a) if they ask for a high ransom, R∗
S1, then

they extract maximum surplus from the high type victim, but the low type will
not pay the ransom. (b) If they ask for a low ransom, R∗

S0, then both the low
and high type victim will pay the ransom but they do not fully extract surplus
from the high type. This trade-off between asking a high or low ransom can be
captured by the following term:

ΦS = β(R∗
S1 −R∗

S0)− (1− β)R∗
S0 = β(T1 − T0)− (1− β)(T0 + V − L− ϵ). (2)

The first term in ΦS is the expected gain for the attacker from charging a high
ransom and extracting maximum surplus from the high type, while the second
term is the expected loss from charging a ransom the low type is not willing to
pay.

We are now in a position to state our first main result. As the preceding
discussion preempts we need to consider combinations of V ≷ L and Φ ≷ 0
giving rise to the four different cases and equilibria.

Theorem 1. There exists a separating equilibrium satisfying the D1 criterion
if and only if the following conditions hold:

(A1) If L < V and ΦS < 0 then kD < T0 < kN .
(A2) If L < V and ΦS > 0 then kD < βT1 − (1− β)(V − L) < kN .
(A3) If L > V and ΦS < 0 then kD < T0 + V − L < kN .
(A4) If L > V and ΦS > 0 then kD < β(T1 + V − L) < kN .

Proof. We first consider the strategy of the victim. Suppose the attacker sends
a signal and ransom demand RS . Suppose the victim infers the attacker is type

Equilibrium Attacker Victim
DE NDE T1 T0

Signal No signal Signal No signal

A1 Signal No signal Pay Pay Pay Pay
A2 Signal No signal Pay Pay No pay Pay
A3 Signal No signal Pay No Pay Pay No Pay
A4 Signal No Signal Pay No Pay No pay No pay

B1 Signal Signal Pay Pay Pay Pay
B2 Signal Signal Pay Pay No pay Pay
B3 Signal Signal Pay No pay Pay No pay
B4 Signal Signal Pay No pay No pay No pay

C1 No signal No signal Pay Pay Pay Pay
C2 No signal No signal Pay Pay No Pay Pay
C3 No signal No signal Pay Pay Pay No Pay
C4 No signal No signal Pay Pay No Pay No Pay

Table 2: Equilibria satisfying the D1 criterion in the signaling game.
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DE. In other words, µ = 1. If the victim is low type and pays the ransom
their expected payoff is −RS − L. Their expected payoff if they do not pay is
−T0−V . It follows the low type victim will optimally pay the ransom if and only
if −RS −L > −T0 −V or equivalently RS < T0 +V −L. They would, therefore,
pay ransom R∗

S0. If the victim is high type and pays the ransom their expected
payoff is −RS−L. Their expected payoff if they do not pay is −T1−V . It follows
the high type victim will optimally pay the ransom if and only if RS < T1+V −L.
They would, therefore, pay ransom R∗

S1. Given that T1 > T0 we also have that
the high type would pay ransom R∗

S0.

Now suppose the attacker does not send a signal and sets ransom demand
RNS . Suppose the victim infers the attacker is type NDE. In other words, µ = 0.
If the victim is low type and pays the ransom their expected payoff is −RNS−L.
Their expected payoff if they do not pay is −V . It follows the low type victim
will optimally pay the ransom if and only if −RNS − L > −V or equivalently
RNS < V −L. They would, therefore, pay ransom R∗

NS if V > L and not pay if
V < L. The same logic holds if the victim is high type.

We now consider the incentives of the attacker. Suppose the attacker is type
DE. Also suppose that on the equilibrium path they signal and set ransom R∗

S0.
Their expected payoff in equilibrium is π(S,R∗

S0) = T0 + V − L − ϵ − kD. In
exploring incentives to deviate from the equilibrium path, we first consider the
possibility the attacker signals but sets a different ransom demand RS ̸= R∗

S0.
If RS < R∗

S0 then the expected payoff of the attacker is π(S,RS) = RS − kD <
π(S,R∗

S0) and so the attacker receives a lower payoff than on the equilibrium
path. If R∗

S1 > RS > R∗
S0 (and µ = 1) then the high type victim would pay

the ransom but the low type victim would not. The expected payoff of the
attacker is, therefore, π(S,RS) = βRS−kD ≤ βR∗

S1−kD. It follows the attacker
prefers the equilibrium path if and only if π(S,R∗

S1) ≤ π(S,R∗
S0) or, equivalently,

β(T1 +V −L− ϵ) ≤ T0 +V −L− ϵ. Rearranging gives the condition on ΦS < 0.
Reversing this argument we can say it is on the equilibrium path for the attacker
of type DE to signal and set ransom R∗

S1 if and only if ΦS > 0.

We next consider the possibility that an attacker of type DE chooses to not
signal. Suppose they set ransom demand RNS (and are inferred to be type NDE).
Their expected payoff is at most π(NS,RNS) = R∗

NS . We then have four different
cases to consider. (a) Suppose V > L and R∗

S = R∗
S0. It follows the attacker

prefers the equilibrium path if and only if V − L− ϵ < T0 + V − L− ϵ− kD or,
equivalently, kD < T0. (b) Suppose V > L and R∗

S = R∗
S1. It follows the attacker

prefers the equilibrium path if and only if V − L− ϵ < β(T1 + V − L− ϵ)− kD
or, equivalently, kD + (1 − β)(V − L − ϵ) < βT1. (c) Suppose V < L and
R∗

S = R∗
S0. It follows the attacker prefers the equilibrium path if and only if

0 < T0 + V −L− ϵ− kD or, equivalently, kD < T0 + V −L. (d) Suppose V < L
and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium path if and only

if 0 < β(T1 + V − L− ϵ)− kD or, equivalently, kD < β(T1 + V − L− ϵ).

Next suppose the attacker is type NDE. Extending the logic of the preceding
discussion there is no incentive for the attacker to choose a ransom other than
R∗

NS . We focus, therefore, on the incentive to signal and choose ransom demand
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R∗
S . We again have four different cases to consider. (a) Suppose V > L and R∗

S =
R∗

S0. On the equilibrium path the attacker has expected payoff π(NS,R∗
NS) =

V − L − ϵ. It follows the attacker prefers the equilibrium path if and only if
V −L− ϵ > T0 + V −L− ϵ− kN or, equivalently, kN > T0. (b) Suppose V > L
and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium path if and only if

V −L−ϵ > β(T1+V −L−ϵ)−kN or, equivalently, kN+(1−β)(V −L−ϵ) > βT1.
(c) Suppose V < L and R∗

S = R∗
S0. It follows the attacker prefers the equilibrium

path if and only if 0 > T0+V −L− ϵ−kN or, equivalently, kN > T0+V −L. (d)
Suppose V < L and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium

path if and only if 0 > β(T1 + V − L − ϵ) − kN or, equivalently, kN > β(T1 +
V − L− ϵ).

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker does not signal and sets
ransom RNS ̸= R∗

NS . We have assumed the victim will infer the attacker is type
NDE. Given that KN > kD, the attacker has most incentive to not signal when
of type NDE. This assumption, therefore, naturally satisfies the D1 criterion.□

In interpretation of Theorem 1 we can see that there exists a separating
equilibrium if and only if kD is sufficiently small and kN is sufficiently large. In
other words, a separating equilibrium exists if it is ‘cheap’ for the attacker to
signal when they have exfiltrated data and ‘expensive’ for the attacker to signal
if they have not exfiltrated data. This would imply, for instance, that if victims
have invested in good monitoring systems to identify data exfiltration, they could
make it harder for the attacker of type NDE to send a credible signal; then, kN
would increase and we would expect the improved monitoring to result in a
separating equilibrium. We explore these issues in mode detail after analysing
pooling equilibria.

3.2 Pooling Equilibrium with Signal

We turn our attention now to pooling equilibria. We focus first on pooling equi-
librium in which the attacker signals. That is, the attacker signals that data
is exfiltrated whether they are type NDE or DE. Given that the attacker will
signal irrespective of type, a signal does not convey any useful information to
the victim on whether or not data has been exfiltrated. We identify four types
of such pooling equilibria, which we will label B1-B4. These are summarised in
Table 2. Equilibria B1-B4 (like A1-A4) differ in terms of whether the victim will
pay.

Two ransom demands that we identified as being particularly relevant in
determining pooling equilibria are:

R∗
P0 = αT0 + V − L− ϵ;

R∗
P1 = αT1 + V − L− ϵ,

(3)

Informally, R∗
P0 and R∗

P1 are the maximum ransom the low and high type,
respectively, are willing to pay if they believe the attacker has exfiltrated data
with probability α.
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As with the separating equilibrium, the optimal ransom demand of the at-
tacker involves a trade-off between setting a high ransom R∗

P1 that only the high
type will pay and a low ransom R∗

P0 that both the high and low type will pay.
This trade-off is captured by the term:

ΦP = βα(T1 − T0)− (1− β)(αT0 + V − L− ϵ). (4)

We can now state our second result.

Theorem 2. There exists a pooling equilibrium in which the attacker signals,
satisfying the D1 criterion, if and only if the following conditions hold:

(B1) If L < V and ΦP < 0 then kN < αT0.
(B2) If L < V and ΦP > 0 then kN < βαT1 − (1− β)(V − L).
(B3) If L > V and ΦP < 0 then kN < αT0 + V − L.
(B4) If L > V and ΦP > 0 then kN < β(αT1 + V − L).

Proof. Consider the strategy of the victim. Suppose the attacker sends a signal
and ransom demand RS . Suppose the victim infers the attacker is type DE with
probability µ = α. If the victim is low type and pays the ransom their expected
payoff is −RS−L. Their expected payoff if they do not pay is −αT0−V . It follows
the low type victim will optimally pay the ransom if and only if −RS − L >
−αT0−V or equivalently RS < αT0+V −L. They would, therefore, pay ransom
R∗

P0. If the victim is high type and pays the ransom their expected payoff is
−RS − L. Their expected payoff if they do not pay is −αT1 − V . It follows the
high type victim will optimally pay the ransom if and only if RS < αT1+V −L.
They would, therefore, pay ransom R∗

P1. Given that T1 > T0 we also have that
the high type would pay ransom R∗

P0.
Now suppose the attacker does not send a signal and sets ransom demand

RNS . Suppose the victim infers the attacker is type NDE. In other words, µ = 0.
If the victim is low type and pays the ransom their expected payoff is −RNS−L.
Their expected payoff if they do not pay is −V . It follows the low type victim
will optimally pay the ransom if and only if −RNS − L > −V or equivalently
RNS < V −L. They would, therefore, pay ransom R∗

NS if V > L and not pay if
V < L. The same logic holds if the victim is high type.

Next consider the incentives of the attacker. Suppose the attacker is type
DE. Also suppose that on the equilibrium path they signal and set ransom R∗

P0.
Their expected payoff in equilibrium is π(S,R∗

P0) = αT0+V −L−ϵ−kD. Suppose
the attacker signals but sets a different ransom demand RS ̸= R∗

P0. If RS < R∗
P0

then the expected payoff of the attacker is π(S,RS) = RS − kD < π(S,R∗
P0)

and so the attacker receives a lower payoff than on the equilibrium path. If
R∗

P1 > RS > R∗
P0 (and µ = α) then the high type victim would pay the

ransom but the low type victim would not. The expected payoff of the attacker
is, therefore, π(S,RS) = βRS − kD ≤ βR∗

P1 − kD. It follows the attacker prefers
the equilibrium path if and only if β(αT1 + V − L − ϵ) ≤ αT0 + V − L − ϵ.
Rearranging gives ΦP < 0. Reversing this argument we can say it is on the
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equilibrium path for the attacker of type DE to signal and set ransom R∗
P1 if

and only if ΦP > 0.

Now consider the possibility that an attacker of type NDE chooses to not
signal. Suppose they set ransom demand RNS (and are inferred to be type NDE).
Their expected payoff is at most π(NS,RNS) = R∗

NS . We then have four different
cases to consider. (a) Suppose V > L and R∗

S = R∗
P0. It follows the attacker

prefers the equilibrium path if and only if V − L − ϵ < αT0 + V − L − ϵ − kN
or, equivalently, kN < αT0. (b) Suppose V > L and R∗

S = R∗
P1. It follows the

attacker prefers the equilibrium path if and only if V −L− ϵ < β(αT1+V −L−
ϵ) − kN or, equivalently, kN + (1 − β)(V − L − ϵ) < βαT1. (c) Suppose V < L
and R∗

S = R∗
P0. It follows the attacker prefers the equilibrium path if and only

if 0 < αT0 + V − L − ϵ − kN or, equivalently, kN < αT0 + V − L. (d) Suppose
V < L and R∗

S = R∗
P1. It follows the attacker prefers the equilibrium path if and

only if 0 < β(αT1 + V −L− ϵ)− kN or, equivalently, kN < β(αT1 + V −L− ϵ).
One can show, using kD < kN , that the analogous conditions for a type DE to
prefer signalling to not signalling are less binding.

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker does not signal and sets
ransom RNS ̸= R∗

NS . We have assumed the victim will infer the attacker is type
NDE. Given that KN > kD, the attacker has most incentive to not signal when
of type NDE. This assumption, therefore, naturally satisfies the D1 criterion. □

In interpretation of Theorem 2 there exists a pooling equilibrium with sig-
nalling if and only if kN is sufficiently small. In other words, there exists a pooling
equilibrium with signalling if and only if it is cheap for the attacker to signal
even if data has not been exfiltrated. In practical terms this would suggest, for
instance, a pooling equilibrium will exist if the victim does not have any mon-
itoring capabilities to identify or evaluate a data breach. It would also be the
case if the criminals can easily extract some information, e.g. file tree or sample
file, that would allow them to signal data exfiltration even though data was not
exfiltrated.

3.3 Pooling Equilibrium with No Signal

We now focus on pooling equilibria in which the attacker does not signal. That is,
the attacker chooses to not signal that data is exfiltrated whether they are type
NDE or DE. Given that the attacker does not signal, irrespective of type, the
lack of signal does not convey any useful information to the victim on whether or
not data has been exfiltrated. We identify four types of such pooling equilibria,
which we will label C1-C4. These are summarised in Table 2 and again differ
in terms of whether the victim will pay. We see that in all of the equilibria C1-
C4 the high type pays whether there is a signal or not. The equilibria differ in
whether the low type will pay.

In stating our third result we remark that all of the ransom demands previ-
ously identified, R∗

S0, R
∗
S1, R

∗
P0, R

∗
P1, and the values of ΦS and ΦP prove relevant.
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To help navigate the statement of the theorem we note that

ΦS − ΦP = (1− α)(βT1 − T0). (5)

Thus, it can be the case that ΦS > ΦP or vice versa. Equilibria C1-C4 largely
depend on different combinations of whether ΦS and ΦP are positive or negative.
We can now state our third result.

Theorem 3. There exists a pooling equilibrium in which the attacker does not
signal, satisfying the D1 criterion, if and only if the following conditions hold:

(C1) If ΦP < 0 and ΦS < 0 then (1− α)T0 < kD.
(C2) If ΦP < 0 and ΦS > 0 then βT1 − αT0 − (1− β)(V − L− ϵ) < kD.
(C3) If ΦP > 0 and ΦS < 0 then T0 − βαT1 + (1− β)(V − L− ϵ) < kD.
(C4) If ΦP > 0 and ΦS > 0 then β(1− α)T1 < kD.

Proof. Consider the strategy of the victim. Suppose the attacker does not send
a signal and sets ransom demand RNS . Suppose the victim infers the attacker is
type DE with probability µ = α. If the victim is low type and pays the ransom
their expected payoff is −RNS − L. Their expected payoff if they do not pay
is −αT0 − V . It follows the low type victim will optimally pay the ransom if
and only if −RNS − L > −αT0 − V or equivalently RNS < αT0 + V − L. They
would, therefore, pay ransom R∗

P0. If the victim is high type and pays the ransom
their expected payoff is −RNS − L. Their expected payoff if they do not pay is
−αT1 − V . It follows the high type victim will optimally pay the ransom if and
only if RNS < αT1+V −L. They would, therefore, pay ransom R∗

P1. Given that
T1 > T0 we also have that the high type would pay ransom R∗

P0.
Now suppose the attacker signals and sets ransom demand RS . Suppose the

victim infers the attacker is type DE. In other words, µ = 1. If the victim is low
type and pays the ransom their expected payoff is−RS−L. Their expected payoff
if they do not pay is −T0 − V . It follows the low type victim will optimally pay
the ransom if and only if −RS −L > −T0 −V or equivalently RS < T0 +V −L.
They would, therefore, pay a positive ransom RS if T0 + V > L and not pay if
T0 + V < L. Similarly, the high type would pay ransom RS if T1 + V > L. We
recall that T1 + V > L by assumption.

Next consider the incentives of the attacker. Suppose the attacker is type DE.
Also suppose that on the equilibrium path they do not signal and set ransom
R∗

P0. Their expected payoff in equilibrium is π(NS,R∗
P0) = αT0 + V − L − ϵ.

Suppose the attacker does not signal but sets a different ransom demand RNS ̸=
R∗

P0. If RNS < R∗
P0 then the expected payoff of the attacker is π(NS,RNS) =

RNS < π(NS,R∗
P0) and so the attacker receives a lower payoff than on the

equilibrium path. If R∗
P1 > RNS > R∗

P0 (and µ = α) then the high type victim
would pay the ransom but the low type victim would not. The expected payoff of
the attacker is, therefore, π(NS,RNS) = βRNS ≤ βR∗

P1. It follows the attacker
prefers the equilibrium path if and only if β(αT1+V −L− ϵ) ≤ αT0+V −L− ϵ.
Rearranging gives ΦP < 0. Reversing this argument we can say it is on the
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equilibrium path for the attacker of type DE to not signal and set ransom R∗
P1

if and only if ΦP > 0.
Now consider the possibility that an attacker of type DE chooses to signal.

Suppose they set ransom demand RS (and are inferred to be type DE). We have
several different cases to consider:

(a) Suppose T0 + V > L, ΦP < 0 and ΦS < 0. Given that ΦP < 0 we
know R∗

NS = R∗
P0. Also, given that ΦS < 0 we know that, if the attacker

signals, they would maximize their payoff by setting ransom R∗
S0 (see the Proof

of Theorem 1). It follows the attacker prefers the equilibrium path if and only if
T0 + V − L− ϵ− kD < αT0 + V − L− ϵ or, equivalently, T0(1− α) < kD.

(b) Suppose T0 + V > L, ΦP < 0 and ΦS > 0. Given that ΦS > 0 we know
that, if the attacker signals, they would maximize their payoff by setting ransom
R∗

S1. It follows the attacker prefers the equilibrium path if and only if β(T1+V −
L−ϵ)−kD < αT0+V −L−ϵ or, equivalently, βT1−αT0−(1−β)(V −L−ϵ) < kD.

(c) Suppose T0 + V > L, ΦP > 0 and ΦS < 0. Given that ΦP > 0 we know
R∗

NS = R∗
P1. Also, given that ΦS < 0 we know that, if the attacker signals,

they would maximize their payoff by setting ransom R∗
S0. It follows the attacker

prefers the equilibrium path if and only if T0+V −L−ϵ−kD < β(αT1+V −L−ϵ)
or, equivalently, T0 − βαT1 + (1− β)(V − L− ϵ) < kD.

(d) Suppose T0 + V > L, ΦP > 0 and ΦS > 0. Given that ΦP > 0 we
know R∗

NS = R∗
P1. Also, given that ΦS > 0 we know that, if the attacker

signals, they would maximize their payoff by setting ransom R∗
S1. It follows the

attacker prefers the equilibrium path if and only if β(T1 + V − L − ϵ) − kD <
β(αT1 + V − L− ϵ) or, equivalently, β(1− α)T1 < kD.

(e) If L > T0 + V then ΦP > 0 and ΦS > 0. Thus, R∗
NS = R∗

P1 and, if the
attacker signals, they would maximize their payoff by setting ransom R∗

S1. It
follows the attacker prefers the equilibrium path if and only if β(T1 + V − L −
ϵ)− kD < β(αT1 + V − L− ϵ) or, equivalently, β(1− α)T1 < kD.

To derive the conditions in C1-C4 stated in the Theorem we note that if
ΦS < 0 then it must be the case that L < T0 + V . Similarly, if ΦS < 0 then it
must be the case that L < αT0 + V < T0 + V .

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker signals. We have assumed the
victim will infer the attacker is type DE. Given that KN > kD, the attacker has
most incentive to signal when of type DE. This assumption, therefore, naturally
satisfies the D1 criterion. □

In interpretation of Theorem 2 there exists a pooling equilibrium with no
signalling if and only if kD is sufficiently large. In other words, there exists a
pooling equilibrium with no signalling if and only if it is expensive for the at-
tacker to signal even if data has been exfiltrated. In practical terms this would
suggest, for instance, a pooling equilibrium will exist if the victim requires de-
tailed evidence of data exfiltration that would require the criminal to analyse
the data in more detail. Or it could be the case that the process of signalling
exfiltration, for example communicating with the victim, is costly in terms of
time and opportunity cost.
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3.4 Equilibrium Existence

Depending on the parameters of the game there may exist a separating equilib-
rium, a pooling equilibrium, both, or neither. To illustrate, consider the param-
eters L = 0, V = 5, α = 0.9, β = 0.5, T0 = 1 and T1 = 5. Then ΦS < 0 and so
there exists a separating equilibrium if and only if kD < 1 < kN . Also ΦP < 0
and so there exists a pooling equilibrium with signalling if kN < 0.9. Thus, for
kN < 0.9 there is a pooling equilibrium with signalling, for 0.9 < kN < 1 there
is neither a separating nor pooling equilibrium with signalling, and for 1 < kN
there is a separating equilibrium. The relative size of the cost for the attacker
to signal data exifltration when they have not exfiltrated data is, thus, crucial
to determining the equilibrium outcome.

We remind that the existence of a pooling equilibrium with signalling relies
on KN being sufficiently small while the existence of a pooling equilibrium with
no signalling relies on KD being sufficiently large. Given that KD < KN it
is generally not the case that there can exist both a pooling equilibrium with
signalling and one without. There are, however, parameter values where this is
possible. For instance, with the parameters introduced above there is a pooling
equilibrium with no signalling if 0.1 < kD. Thus, if 0.1 < kD < kN < 0.9 there
exists both a pooling equilibrium with signalling and a pooling equilibrium with
no signalling.

The existence of multiple equilibrium can capture different norms or historical
precedent of the ransomware environment. Consider, for instance, a setting in
which ransomware criminals never signal data exfiltration. Does an attacker who
has exfiltrated data have an incentive to deviate and signal exfiltration? If data
exfiltration is suspected without a signal (α = 0.9) then the attacker can ask a
relatively high ransom without signalling. The extra ransom that can be asked
if data exfiltration is signalled may not, therefore, be enough to cover the costs
of data exfiltration (kD). Thus, it is an equilibrium to not signal.

Now consider the same parameters but a setting in which all ransomware
criminals signal data exfiltration. Does an attacker who has not exfiltrated data
have an incentive to not signal and save on the cost of signalling? If data ex-
filtration is suspected with a signal (α = 0.9) then the attacker can extract a
relatively high ransom if they signal (even though data is not exfiltrated). The
loss in revenue from not signalling may, therefore, be more than the saving in
signaling cost (kN ). Thus, it is an equilibrium to signal. In a setting with multi-
ple equilibria, historical precedent and learning dynamics may determine which
equilibrium (signal or not) is prevalent at the time (36).

3.5 Expected Equilibrium Payoffs

A key objective of our work is to analyse the payoff consequences, for both
victim and attacker, of private information on the side of the victim. In Table
3 we detail the expected payoff of the attacker and victim in equilibria A1-A4,
B1-B4 and C1-C4. These are ex-ante expected payoffs before own type is known.
For instance, in equilibrium A1 there is probability α the attacker is type DE
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and obtains payoff R∗
S0−kD and probability 1−α the attacker is type NDE and

obtains payoff R∗
NS . The expected payoff is, therefore, α(R∗

S0−kD)+(1−α)R∗
NS

Given that ϵ can be arbitrarily small we have omitted it from calculations of
expected payoff.

In interpreting the payoffs in Table 3 it is important to keep in mind equi-
librium existence. For instance, care is needed in saying payoffs are, say, higher
in equilibrium C1 than B1 or A1 because these respective equilibria may ex-
ist for different parameter values. Our analysis will take this into account. We
can, however, say at a broader level that the attacker’s payoff, everything else
the same, is highest in the pooling equilibria with no signalling (C1-C4). The
intuition being that the attacker does not incur any costs of signaling. From a
policy perspective, to deter ransomware it would, therefore, be beneficial to move
away from a pooling equilibria with no signalling (C1-C4) to either a separating
equilibrium (A1-A4) or a pooling equilibrium with signaling. As discussed in the
previous sub-section this may involve changing the norms of the ransomware
environment.

Another policy insight that we can take from Table 3 is the importance of
pre-empting a ransomware attack. In particular, pre-emption and appropriation
preparedness for an attack can lower the recovery costs of an attack V , the
reputational damage T1 and T0, and potentially decrease the probability of being
a high type β and reduce the probability of data exfiltration α. All of these would
reduce the losses of the victim in the event of a breach. This shows up very clearly
in our model because the attacker is able to extract maximum surplus from the
victim.

Table 3: Expected payoff of attacker and victim in equilibrium.
Equilibrium Attacker Victim

A1 αT0 + V − L− αkD −αT0 − V
A2 α(β(T1 + V − L)− kD) + (1− α)(V − L) −α(βT1 + (1− β)T0)− V
A3 α(T0 + V − L− kD) −αT0 − V
A4 α(β(T1 + V − L)− kD) −α(βT1 + (1− β)T0)− V

B1 & B3 αT0 + V − L− αkD − (1− α)kN −αT0 − V
B2 & B4 β(αT1 + V − L)− αkD − (1− α)kN −α(βT1 + (1− β)T0)− V

C1 & C2 αT0 + V − L −αT0 − V
C3 & C4 β(αT1 + V − L) −α(βT1 + (1− β)T0)− V

To analyse the consequences of private information we need to consider an
alternative game in which the attacker knows the type of the victim and so knows
if the reputational damage that would result from data publication is T0 or T1.
We can apply Theorems 1, 2 and 3 to distinguish the conditions under which
there exist separating and pooling equilibirum in this revised game. Specifically,
by setting β = 0 or 1 we derive the following corollaries.
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Corollary 1. If the victim is known to be type i = {0, 1} there exists a separating
equilibrium satisfying the D1 criterion if and only if the following conditions hold:

A1A2. If L < V , then kD < Ti < kN .

A3A4. If L > V , then kD < Ti + V − L < kN .

Proof. Suppose β = 0. Then ΦS < 0. Applying Theorem 1 we obtain conditions:
(A1) L < V and kD < T0 < kN , and (A3) L > V and kD < T0 + V − L < kN .
Suppose β = 1. Then ΦS > 0. Applying Theorem 1 we obtain conditions: (A2)
L < V and kD < T1 < kN , and (A4) L > V and kD < T1 + V − L < kN . □

Corollary 2. If the victim is known to be type i = {0, 1} there exists a pooling
equilibrium with a signal satisfying the D1 criterion if and only if the following
conditions hold:

B1B2. If L < V then kN < αTi.

B3B4. If L > V then kN < αTi + V − L.

Proof. Suppose β = 0. Then ΦP < 0. Applying Theorem 2 we obtain conditions:
(B1) L < V and kN < αT0, and (B3) L > V and kN < αT0 + V − L. Suppose
β = 1. Then ΦP > 0. Applying Theorem 2 we obtain conditions: (B2) L < V
and kN < αT1, and (B4) L > V and kN < αT1 + V − L. □

Corollary 3. If the victim is known to be type i = {0, 1} there exists a pooling
equilibrium with no signal satisfying the D1 criterion if and only if the following
conditions hold:

C1C4. If (1− α)Ti < kD.

Proof. Suppose β = 0. Then ΦS < 0 and ΦP < 0. Applying Theorem 3 we
obtain condition (C1) (1 − α)T0 < kD. Suppose β = 1. Then ΦS > 0 and
ΦP > 0. Applying Theorem 3 we obtain condition: (C4) (1− α)T1 < kD. □

With these three corollaries we can derive the expected payoff of the attacker
and victim in a game where the victim’s type is known. Table 4 details the rele-
vant payoffs. For instance, the expected payoff of the attacker under equilibrium
A3A4 if the victim is type 0 is α(T0+V −L−kD) and the expected payoff of the
attacker under equilibrium A3A4 if the victim is type 1 is α(T1 + V − L− kD).
Some care is needed in deriving ex-ante expected payoffs because the existence
of equilibrium A3A4 for the low type does not guarantee existence of equilib-
rium A3A4 for the high type, and vice-versa. Even so, by calculating which
equilibrium emerges for each type we can determine an ex-ante expected payoff.
For instance, if equilibrium A3A4 does exist for both the low type and high
type then the attackers ex-ante expected payoff (before victim type is known) is
α(βT1 + (1− β)T0 + V − L− kD).
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Table 4: Expected payoff of attacker and victim in equilibrium when type is
known.

Equilibrium attacker Victim

A1A2 (i = {0, 1}) αTi + V − L− αkD −αTi − V
A3A4 (i = {0, 1}) α(Ti + V − L− kD) −αTi − V

B1B4 (i = {0, 1}) αTi + V − L− αkD − (1− α)kN −αTi − V
C1C4 (i = {0, 1}) αTi + V − L −αTi − V

3.6 The Value of Private Information

We are now in a position to analyse and quantify the payoff consequences of pri-
vate information for the victim. For any set of parameters L, V, T0, T1, kD, kN , α
and β we can: (i) determine which, if any equilibrium will hold in a game with
incomplete information on victim’s type, (ii) determine which equilibium will
hold in the games where victim’s type is known to be high or low, (iii) calcu-
late expected payoffs of the attacker and victim with and without incomplete
information on victim’s type, and (iv) quantify the payoff impact of private
information. We provide three examples.

For our first example we consider parameters L = 1, V = 3, α = 0.5, T0 =
2, T1 = 4, kD = 0.1 and kN = 6. Imputing the parameter values into Theorems
1-3 it becomes apparent that there exists a separating equilibrium for any value
of β and does not exist a pooling equilibrium (with or with no signal) for any
value of β. This example, thus, focuses on the case of a separating equilibrium.
In Figure 2 we plot expected payoffs (as given in Tables 3 and 4) as a function
of β.

You can see in Figure 2 that the payoff of the attacker is substantially lower
when the type of the victim is not known. The difference reaches a maximum at
the point of transition between equilibria A1 and A2 given by T0 = βT1 − (1−
β)(V − L) or equivalently

β =
T0 + V − L

T1 + V − L
. (6)

For the parameters in our example this gives β = 2/3. If the type of the victim
is unknown the expected payoff of the attacker is 2.95. If the type of the victim
is known the ex-ante expected payoff of the attacker is 3.62. So, the attacker’s
payoff is 18.43% lower if it does not know the type of the victim.

You can see in Figure 2 that the victim’s payoff is higher if the attacker does
not know their type and β < 2/3. The intuition being that the attacker sets the
ransom as if the victim is low type (equilibrium A1) and, thus, the high type is
not exploited as much as they would have been if type was known. If β > 2/3
we see that the payoff of the victim is the same whether or not the attacker
knows their type. In this case the attacker sets the ransom as if the victim is
high type (equilibrium A2). This means the high type is maximally exploited by
the attacker, while the low type does not pay the ransom and, therefore, suffers
recovery and reputational losses. The net effect for the victim is the same as
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if the attacker knew their type and they were maximally exploited. While the
victims payoff is the same (for β > 2/3) whether type is known or not, we remind
that the attacker’s payoff is lower when the victim’s type is not known. This is
because the attacker loses out from the low type not paying the ransom.

Fig. 2: Expected payoff of the attacker and victim when L = 1, V = 3, α =
0.5, T0 = 2, T1 = 4, kN = 6, kD = 0.1. An example of a separating equilibrium.

In our second example we set kN = 0.9 while keeping everything else the same
(L = 1, V = 3, α = 0.5, T0 = 2, T1 = 4, kD = 0.1). Imputing the parameter values
into Theorems 1-3 it becomes apparent that there exists a pooling equilibrium
with signaling for any value of β and does not exist a separating equilibrium
or pooling equilibrium with no signal for any value of β. In Figure 3 we plot
the corresponding payoffs. Again, we see that the attacker loses payoff from not
knowing the type of the victim. This loss is maximal at the transition from
equilibrium B1 to B2, given by αT0 = βαT1 − (1− β)(V − L) or equivalently

β =
αT0 + V − L

αT1 + V − L
. (7)

For the parameters in our example this gives β = 3/4. If the type of the victim
is unknown the expected payoff of the attacker is 2.5. If the type of the victim
is known the ex-ante expected payoff of the attacker is 3.25. So, the attacker’s
payoff is 23.08% lower because it does not know the type of the victim.

The relative trade-offs for the victim are similar in the pooling example as
the separating example. In particular, if the attacker sets the ransom for a victim
of low type (equilibrium B1) then the victim gains from their type being private
if they are high type. If, however, the attacker sets the ransom for a victim of
high type (equilibrium B2) then the victim does not gain from their type being
unknown. In summary, the attacker loses payoff from not knowing the victim’s
type. The victim gains from their type being unknown in the case of equilibrium
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Fig. 3: Expected payoff of the attacker and victim when L = 1, V = 3, α =
0.5, T0 = 2, T1 = 4, kN = 0.9, kD = 0.1. An example of a pooling equilibrium
with signalling.

A1, B1 and also A3 and B3. The victim does not gain from the type being
unknown in the case of equilibrium A2, A4, B2 and B4.

It is interesting to compare payoffs when kN = 0.9 with those when kN = 6
(for, say, β = 2/3). It can be seen from Figures 2 and 3 that the attackers
expected payoff is higher when kN = 6. This may seem counter-intuitive given
that a high kN means a higher cost from signalling. We highlight, however, that
a high kN results in a separating equilibrium that allows the type DE attacker
to extract a high ransom because their signal of data exfiltration is credible.
Specifically, when kN = 6 the type DE sets ransom R∗

S0 = T0+V −L = 4, while
a type NDE sets ransom R∗

NS = V −L = 2. The expected payoff of the attacker
is, therefore, α(R∗

S0 − kD) + (1− α)R∗
NS = 3.9α+ 2(1− α) = 2.95.

By contrast, when kN = 0.9 we obtain a pooling equilibrium in which the
attacker’s signal of data exfiltration is not sufficiently credible. This lowers the
ransom the attacker can demand to R∗

P0 = αT0 + V − L = 3. Consequently the
type DE gets a lower payoff with the lower kN (2.9 compared to 3.9). The type
NDE, by contrast, has a higher payoff (2.1 compared to 2) because they are also
able to demand ransom R∗

P0, although they incur cost kN . The expected payoff
of the attacker is R∗

P0 − 0.1α− 0.9(1−α) = 2.5. Overall, therefore, the attacker
has a lower expected payoff when kN = 0.9 compared to kN = 6 (2.5 compared
to 2.95). This trade-off is apparent from the payoffs in Table 3, comparing A1
and B1.

For our final example we set we set KD = 5 and kN = 6 while keeping
everything else the same (L = 1, V = 3, α = 0.5, T0 = 2, T1 = 4). Imputing
the parameter values into Theorems 1-3 it becomes apparent that there exists
a pooling equilibrium with no signal for any value of β and does not exist a
separating equilibrium or pooling equilibrium with signalling for any value of β.
In Figure 4 we plot the corresponding payoffs. Again, we see that the attacker
loses payoff from not knowing the type of the victim. This loss is maximal at
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the transition from equilibrium C2 to C4 given by ΦP = 0. This gives the same
critical value of β as detailed in equation 7, which we know, for the parameters
in our example, yields β = 3/4. If the type of the victim is unknown the expected
payoff of the attacker for β = 3/4 is 3. If the type of the victim is known the
ex-ante expected payoff of the attacker is 3.75. So, the attacker’s payoff is 20%
lower because it does not know the type of the victim.

Fig. 4: Expected payoff of the attacker and victim when L = 1, V = 3, α =
0.5, T0 = 2, T1 = 4, kN = 6, kD = 5. An example of a pooling equilibrium with
no signal.

Comparing Figures 3 and 4 you can see that the outcomes are very similar.
Indeed, the victim payoff is exactly the same in the case of a pooling equilibrium
with signalling and no signalling. The criminal payoff is higher in the case of
a pooling equilibrium with no signalling because they no long incur the cost of
signalling. This reiterates the point that a high value of signalling, kN and/or
KD, may not be an effective deterrent of ransomware because it can result in
equilibria where criminals need not incur costs of signalling.

You can also see in Table 3 that the payoff of the victim is not directly im-
pacted by kN or kD. This is because the criminal is able to extract the same
surplus from the victim in equilibria A1, A3, B1, B3, C1 and C2. Generally,
speaking, as would be expected, the loss to the victim is reduced by lowering
T0, T1, V and β. The victim’s payoff is also reduced by lowering α. Thus, reduc-
ing the losses from data exfiltration as well as reducing the probability of data
exfiltration reduce the losses to the victim.
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4 Conclusion

This paper provides a game-theoretic analysis of the double-sided information
asymmetry in double extortion ransomware attacks. We recognised that victims
are typically unable to verify if data was exfiltrated or not, while attackers typi-
cally do not know the value of any data exfiltrated. We modeled the ransomware
attack as a signaling game, where attackers could signal if data is exfiltrated
and victims pay based on the ransom, signal and the value of information. Our
key contribution is that, depending on the parameters of the game, private in-
formation of the victim (about the value of exfiltrated data) significantly lowers
the profitability of the attack for the criminal. It is, therefore, in the interests
of potential victims, businesses, organisations, and/or individuals, to retain and
amplify the extent of their private information.

As described by (23), there are different limitations in applying a game-
theoretic framework to real-life situations. For example, the assumption of com-
mon knowledge of game parameters is strong: most probably there is no learning
of these parameters through repeated interaction between attacker and defender.
Furthermore, it might be hard for victims to determine the value of the exfil-
trated data, especially if it is uncertain which data is exfiltrated. Another lim-
itation is the applicability of Nash equilibrium: while it describes an outcome
in which no one wants to change their strategy, it does not predict the path
towards an equilibrium. Therefore it is unknown if there are multiple equilibria
possible, to predict which equilibrium will be reached.

Despite these limitation, we believe that a game-theoretic analysis could still
give useful insights about the interaction between attackers and victims during
double extortion ransomware. According to our model, the most effective way
to disrupt the attackers profitability is to: lower the probability of ‘successful’
data exfiltration, lower the probability the victim has files of high reputational
cost, and lower the recovery cost from an attack. This would involve a mix of
prevention (to lower the probability of data exfiltration and loss of sensitive
data) as well as improved recovery options, such as back-ups.

These results align with preventive measures suggested by (17; 27; 23; 18; 20).
(17) proposes a strategy to hide files from attackers. By considering real-world
ransomware samples, there experiments show that this strategy is a cost-effective
method to decrease the probability of valuable files being exfiltrated. (27) pro-
poses a strategy based on automated mitigation of attackers where data ex-
filtration takes place. This strategy is based on finding a fingerprint of data
exfiltration in ransomware attacks and building monitoring systems which pre-
vent data exfiltration to take place. Although their strategy is an efficient way
to prevent the same type of attacks, it does not prevent new attacking patterns
to be detected and prevented. Finally, (23) mentions the use of canary files,
which are files which alerts a monitoring systems if the files are moved, copied
or edited. This strategy might be useful in preventing data exfiltation, but does
depend on a quick follow-up if a canary file alerts a monitoring system.

It would be beneficial for victims to take preventive measures. However, if
data exfiltration has taken place, our study proposes a strategy to lower the
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impact of data exfiltration during ransomware attacks: victims should keep the
value of the exfiltrated data as private as possible, as exposing this information
might increase the ransom.

Finally, it is important to stress the following externality effect: the more
victims safeguard their sensitive data the more that benefits other businesses,
including those with vulnerable sensitive data. This is because it would revise
downwards the beliefs of attackers about the ransoms they can reasonably expect
victims to pay. This externality effect should be acknowledged by policy makers.
In particular, it means businesses will under-invest in cyber security preven-
tion and recovery compared to the social optimum. This can justify government
support for cyber security investment.
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